High accuracy geometric Hermite interpolation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric Hermite interpolation with circular precision

We present several Hermite-type interpolation methods for rational cubics. In case the input data come from a circular arc, the rational cubic will reproduce it. c © 2008 Elsevier Ltd. All rights reserved.

متن کامل

Optimal Geometric Hermite Interpolation of Curves

Bernstein{B ezier two{point Hermite G 2 interpolants to plane and space curves can be of degree up to 5, depending on the situation. We give a complete characterization for the cases of degree 3 to 5 and prove that rational representations are only required for degree 3. x1. Introduction and Overview We consider recovery of curves from irregularly sampled data. If the curves are to be represent...

متن کامل

Geometric Hermite interpolation by logarithmic arc splines

This paper considers the problem of G1 curve interpolation using a special type of discrete logarithmic spirals. A ”logarithmic arc spline” is defined as a set of smoothly connected circular arcs. The arcs of a logarithmic arc spline have equal angles and the curvatures of the arcs form a geometric sequence. Given two points together with two unit tangents at the points, interpolation of logari...

متن کامل

Geometric Hermite interpolation by cubic G1 splines

In this paper, geometric Hermite interpolation by planar cubic G1 splines is studied. Three data points and three tangent directions are interpolated per each polynomial segment. Sufficient conditions for the existence of such G1 spline are determined that cover most of the cases encountered in practical applications. The existence requirements are based only upon geometric properties of data a...

متن کامل

Geometric Hermite interpolation with maximal orderand smoothness

We conjecture that splines of degree n can interpolate points on a smooth curve in R m with order of contact k ? 1 = n ? 1 + b(n ? 1)=(m ? 1)c at every n-th knot. Moreover, this Geometric Hermite Interpolant (GHI) has the optimal approximation order k + 1. We give a proof of this conjecture for planar quadratic spline curves and describe a simple construction of curvature continuous quadratic s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computer Aided Geometric Design

سال: 1987

ISSN: 0167-8396

DOI: 10.1016/0167-8396(87)90002-1